пятница, 1 февраля 2013 г.

кем можно работать с математическим образованием

Но построить хороший содержательный курс, обладающий понятной (самоочевидной) структурой не так-то просто для преподавателя, поэтому обычно этим предпочитают не утруждаться, рассказав ученикам 50 занимательных фактов о треугольниках, будто это передача о живой природе на канале BBC.

Спросим учащегося, что он знает о теореме Виета. Попытки выписать какие-то заклинания из буковок p и q можно смело считать беспомощностьюЂЂЂ а, оказывается он пишет часть её доказательства, ну что же, молодец, можно поставить «хорошо»? Но этого явно не достаточно для её применения, нужно знать формулировку, условие применимости. Информация имеет определённую структуру, математика ЂЂЂ не набор бессмысленных значков, и не должна таковой выглядеть для учащегося. Значит «зубрежкой» не ограничиться, и курс должен обладать определенной логической структурой, видимой ученику. В дальнейшем он сам научится выделять структуру, но пока мы приучим его к «хорошему стилю».

Позволю себе дальнейшие измышления перевести в сторону математики. Как-никак у школы математический профиль, да и мне это ближе. И обмануть в точных науках сложнее.

Казалось бы, что тут сложного; учебник в руки, немного дисциплины, мотивировка не получить плохую оценку ЂЂЂ вот всё, что нужно, информация усвоена. Тема вызубрена, отвечена на отлично, забыта. Но через пять лет кроме смутного «а где-то я это уже видел» не остается ничего. Значит с информацией не вышло, но и не беда, ведь остается прилежание, способность взять нужную книгу, прочитать её и мысленно поставить себе «отлично» за то, что ты такой замечательный специалист. Если, конечно, будет нужная книга. И время. Да и в школьные времена память была получше, а сейчас что-то не запоминаетсяЂЂЂ «И я не виноват, что не правильно получилось, так было в книге написаноЂЂЂ какой-то».

В процессе учебы мы приобретаем какие-то конкретные знания, они могут нам пригодиться в таком виде, как мы их получили, но вот скорее всего не пригодятся. Можно принять это как аксиому, можно доказывать опытным путем, так или иначе ЂЂЂ школа не готовит специалистов, и не должна. Школа расширяет кругозор, формирует конструктивное мышление, дает навыки обработки и усвоения информации.

В последнее время мы видим немало топиков об образовательной системе окрашенных нейтрально-негативно. Да, можно жаловаться, можно идти против системы, а можно предложить разумные дополнения. Речь пойдет про одну питерскую школу, в которой учат многому, но кроме всего прочего, самому важному ЂЂЂ учат учиться. И тут, казалось бы, всё просто, но особенностей достаточно, чтобы можно было про это рассказать.

Лаборатория Непрерывного Математического Образования

Лаборатория Непрерывного Математического Образования / Хабрахабр

Комментариев нет:

Отправить комментарий